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I. Introduction

The objective of this report is to review the various methods that have been
studied in the past to allow probabilistic analysis of dynamic response for
systems with random parameters. In general, the mechanical parameters (i.e.,
spring, damping, Joint parameters, dead zones, etc.) may not be known exactly.
If, for example, the variations about the nominal values are very small, then
the dynamic response would be adequately obtained deterministically.
However, for space structures which require precise pointing, it appears that the
variations or uncertainties about the nominal values of the structural details and
of the environmental conditions may be too large to be considered as

negligible.

Thus, these uncertainties must be accounted for on some rational basis
which we shall assume to be deflned in terms of probability distributions about
their nominal values. The quantities of concern for describing the response of
the structure includes displacements and velocities, as well as the distributions
of natural frequencies. The exact statistical characterization of the response
would yield Joint probability distributions for the response variables. Since the
random quantities will appear as coeflicients, determining the exact
distributions will be difficult at best. Thus, certain apbroximations will have to
be made. There are a number of techniques that we shall discuss that are

available even in the non-linear case.

In the general case, the n-mass linear structural system possesses the
dynamical description through the differential equation

MYy + Cy + Ky = f(t) (1.1)

where M, C, K are the mass, damping and stiffness matrices, and f(t) denotes

the external excitation on the structure.



We shall define the vector equations (1.1) through the vector

y
x=| (1.2)
y
which represents the system (1.1) as
-
x = AX + Bf(t), X, = (1.3)
Yo
where
0
0 I
A = , B= [ ] 1.4
-M K —M‘IC) M™! (1-4)
The solution of (1.3) for x,(0)=X, Is
t
x(t) = e" A%, + fe'A“’")Bf(r)dT . (1.5)
o}

We assume that the matrix B, determined by the mass constants, Is
deterministic. Thus, the random quantities appear in matrix A. We shall
denote the random variable in A, as X,,...,Xp. Further, the external

excitations f(t) may or may not be random.

The most important topic for englneering systems Iis how uncertain
parameter values influence the accuracy of system response prediction. It often
suffices to know how these uncertainities influence the accuracy In estimating
the values of the 1'1ational frequencies and their corresponding normal modes of

motion in a conservative system (C= 0).

Since linear system response prediction depends upon frequency response or
impulsive admittance, our interest will center on natural frequencies, normal
modes, frequency response, as well as impulse response. The methods of
techniques that we will describe in order to pursue the various subjects are: (1)

Liouville's equation; (2) perturbation methods; (3) mean square approximate



systems; and (4) non-linear systems, with approximation by linear systems.



II. Liouville Equation

In this section we derive the method based upon the Liouville equation for
the time evolution of the Joint probability distribution function of the state

space (2nx 1) column vector x and the system parameters.

The use of the Liouville equation in mechanies and statistical mechanics is
of long standing and goes back to Maxwell (see for example [1,2,3]). These
references do not consider random system parameters, and average quantities
under equilibrium conditions is of main interest. While not of direct interest to
us, it is possible to adapt these early methods to our needs. We derive the
needed form of the Liouville equation following a procedure suggested by
Kozin [4] for systems with random parameters and random or deterministic

initial values.

We are interested in the linear equations of motion in the form given by

(1.3) with f=0:

X = AX , (2.1)

where X is the (2nx1) colwumn vector whose transpose xT has the form xT =

{xl, e XXy e ,f(n} and A is the (2nx2n) matrix given by the first of

(1.4) The vector x is the state space form for representing the system response;
the components of x will be denoted by x,(t), k=1, ...,2n. The random
variables in A are denoted by X,,...,X,. However, since the Liouville
approach applies to general nonlinear as well as linear equations, we consider
the general system

X = (Xps vy Xoni Xyy oo e h X3t) , k=1,...,2n . (2.2)
Let p(X;, - -« 1 Xop3 X4y -+ -, X3 t) be the Joint probability distribution of the
random quantities (X,, ...,Xgy Xy ...,Xy). We deflne the characteristic

function ¢ as



2n

¢ =E [exm O xi(t) + E)qux,-” L i=vo1 . (2.3)
1 =1

k=
The differentiation of (2.3) with respect to time gives

88_“2 =E li 2Eriﬁkick(t) expi QEHBKXK(Q + %45;}(;” . (2.4)

The use of (2.2) in (2.4) ylelds

n 2n m
9 =i ZZGKE gxexpl [ 3 0exi () + Zq{)ij] (2.5)
ot k=1 k=1 =1

Since (2.3) is essentially the Fourier transform of the Joint density function

D(Xy,e0sXopns Xy, X5 t), the inverse Fourier transform of (2.5) produces

—-—=-) . (2.8)
=1
The solution of (2.8) for p is given by a suitable function of the

independent integrals of the Lagrangian system

— = e o= . (2.7)
g, 0gon g Zon

-~ +iii+
o T B

Let u;, ..., Uy, be 2n-independent integrals of (2.7). Then we know that the

_C_l.t; _ —dp dx, dxg,
1

general solution of (2.8) is

D (Xpr o v o Xops Xpo o v o Xpit) = 0 Uy, o vvy Upys Xy o v 0, X3 t) (2.8)
where h is an arbitrary function whose form is determined by the initial

conditions on Xx.

In particular, consider the case where X, ...,X, are explicit random
mechanical parameters which are independent of the integrals. Then (2.8) can
be written as

D(Xys o« v v Xopt Xyo oo X t) = Dy(uy, oo, 0 ) (X, -0, X)), (2.9)
where h, is the Joint density function of the parameters, and h; is the

conditional density of the randomness of the Initial conditions. To illustrate the



form, consider as an example the simple linear system deflned as

. 2 _
x(t) + w?x(t) =0 } (2.10)

X(t,) = Xy » X(t,) = Xgq

In this case, we would have (X,,,X,,) random initial values, and w, a random

parameter. The Liouville equation is simply written as

a a a
R - R (2.11)
ot Ix, Oxq
where (2.7) is simply
dx dx
a _ v 2 _do (2.12)
1 X5 w2xl 0
In this case, we would easily find
D(X 1 Xg5w;3t) = Dy (U1(X10,X005btoiw),s Ug(XygrX 50, thtoiw) JHg(w)
X20 |
= h, |X gcos w(t—t,) + —Q-J-smw(tr- t)
— WX oSInw(t—1t,) + Xy0c0s w(t—t,) [ho(w) . (2.13)
Upon utilizing the fact that the initial values can be defined as
Xo
X0 = X c08 w(t,—t) + Fsinw(to— t) = u,(X,Xg, b, thw)
(2.14)
Xgo = — WX,;SINW(t,—t) + XgC05w(te—t) = uy(X;, Xy, b0, tw)
the final probability form for the simple oscillator (2.10) becomes
D(Xy,Xg5wit) = By (Uy(X1,Xg0b6,Gw),s Ug(Xy,Xo, b, tiw) Jg(w) . (2.15)

For the higher order system, the exact form of p in (2.8) would be obtained as

in (2.15).

We note that the initial conditions may be deterministic so that h; is a

product of impulses at the origin and at unity



hy(Upy ooy Ugpi ) = 8(1y).6(uy)d(uy = 1)..6(ugy) (2.18)
where §(.) is the delta function. Thus (2.15) would become

p[xl, N SYHD TS ,Xm;t]=6(u1)...6(un)5(un+1—1)...5(u,_,n)h2(X1, v X)) -
(2.17)

Let us illustrate this process by the simplification of the example (2.10)-(2.15).
Consider again the undamped one degree of freedom linear oscillator. Let w?

be a random parametric value. For t,=0,

X

u; = X,Coswt — “Zsinwt ,
w
U, = WX, sinwt + X, coswt . (2.18)
Assume that w? has a discrete distribution given by
m
h.z(w2) = Z Pié(w2—' wi2) . (2.19)
1
For x,=0, X,=1 at t= 0, (2.17) becomes
2 < 2_,,2
D(X1,Xgw? 8) = 6(u;)8(up-1) I P (w™= wi)
1
X2 & 2 2
= §|x,coswt — -E-slnwt § (wx sinwt + X coswt— 1) P8 (w®~ wy)
1
(2.20)

Let us determine the mean of x, to illustrate a possible use for (2.20); we have
E{x,}= [ dx,[ dx,[ dw? [:(lp(xl,xg,wz;t] . (2.21)
Straight integration of (2.21) (see [7]) yields from (2.20)

m sinw;t

E{x,} = 2P

(2.22)
Wi

Other illustrations, including damping, are given in [4,5]. We are frequently
concerned with the moments of x. Let us show how (2.8) can be employed to

obtain them.

To keep the details simple, consider the linear damped one degree of

freedom system with equation of motion,



)::1 = X, (= gl)
. LX B ix (= ) (2.23)
2 m 1 m 2 2 .

Equation (2.8) now takes the form

op , 9(g,p)  9(gp)
8t+ 0x, + 0x, =0

Assume the m, k, ¢ are independent of the initial vector, with hy(m,k,c) the

(2.24)

probability density function of these parameters, and write

D(Xy,Xotm,K,¢) = hy (u;(X,,Xg,tm,K,¢), ug(X,;,X,,t,m,k,¢)) hy(m,k,c) (2.25)

In this case, we could simply rewrite the function h, as

h, (uy(x4,%g,tm,k,¢)] = py(X;,X,,t|m, k,c) (2.26)
since the parameters (m,k,c) are conditional for h;. Upon inserting (2.26) into
(2.25) and then into (2.24), we obtain

9p, N 9(g,p,) N ANep) _
ot O0x, 0%,

where h,(m,k,c) has been factored out. Let us evaluate the conditional

(2.27)

expectations

E{x, jm,k,c} = m,; o(t) = [ [ x;p,0x,dx,

(2.28)
E{X, |m,k,c} = mg (1) = [ [ x,p,dx,dx,
Differentiation (partial) of these equations with respect to time produces
i dp,
(2.29)
3 dp,
But, from (2.23),
8 5, d(g,p
pl - _ (glpl) _ ( 2 1) . (2.30)
at 0%, 0%,

The substitution of (2.30) into (2.29), the employment of (2.23) and simple



integration by parts of the resulting terms on the right-hand side of (2.29)
finally yields

My o= Mgy »

(2.31)
ho=- X -
0,1 m 10 m ol

The same procedure will produce the equations for the conditional moments
E{x}?|m.,k,c}, BE{x?|m,k,c}, etc. We note that for the first conditional moments

we could have taken the conditional expectation of (2.23) to produce (2.31);

however, this procedure only applies to the first moments.

We integrate the moment equations (2.31) to obtain the conditional
moments as a function of time. On multiplying these moments by h,(m,k,c)

and integrating over m,k, and ¢, we obtain the moments of x, and X,.

It is clear from the above discussion that the Liouville equation will provide

the exact solution for the Joint probability density function p(xy, ..., Xgn;
Xy o+, Xpit) in the absence of external forces provided the integrals
u;, ..., Uy, can be obtained. Further, it provides a straightforward method for

determining the moments of x from which means and variances of x can be

obtained.

The Liouville equation applies when there are no external forces. We are
interested in the case when external forces are present, of course. Let us see

what can be done along these lines.

The Fokker-Planck equation is the natural extenslon of the Liouville
equation (see [8,7]). We conflne our attention to the case in which the
external force vector f can be obtained by passing gﬁusslan white noise through
a stable linear damped system. We have as equations of motion, conditional on

M= m, K=k, and C= ¢,
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dx; = Xpdt ,

k c X3
dx, = — —x,;dt - —Xx,dt + —dt , (2.32)
m m m

dxy = — fxzdt + dB , X, = O at t=0

where we have employed the differential notation in this case, set f=x;, and
were dB is the Brownian motion increment with

E{dB} =0 , E{dB)?}=oc2%dt . (2.33)
The last equation of (2.32) represents the fact that the excitation is obtained by
passing a gaussian white noise through a linear first order stable fllter. We
notice that for the Ito system (2.32) xT={x,;,Xp,X3} is a vector Markoff process

that generates a Fokker-Planck equation.

It can be shown that in this case the Fokker-Planck equation for the

conditional probability density function p, is

i

dp, 3 a { k ¢ 1 } b}
Lo O
2 0xZ

(2.34)
We observe that all but the last term on the right are the same as would have

occurred in the Liouville equation in the absence of f. Let the conditional

moments be

K, _k, k
My, ko ks = E{Xl1 Xg Xaa} (2.35)

k k k
= [ [ [x;" x2® %3° Dy(X1XgiXg) dx;dxpdxg

Then, proceeding as in the development of (2.31), we find
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My g0~ My 10
. _ k ¢ 1
Mo,10 =~ | My g0~ o Mgy + o My g1 (2.38)

Ogo,1 = — ﬂmo,o,l

On multiplying the solutions of (2.38) by h,(m,k,c) and integrating out the
condition in these three conditional moments, we finally obtain the moments of
X as a function of time. We obtain in analogous fashion the differential
equations for the second conditional moments; we do not do this as the steps
are of a mechanical nature and not of direct interest. The main point to notice
is that differential equations for the conditional moments of x can be obtained
when an external force is present in the equations of motion provided this force

is produced by passing white noise through a suitable filter.

It is important to point out that for any gaussian external excitation the
solution vector is gaussian conditioned on the random parameters. Therefore,

all conditional moments can be obtained but not as easily as above [8].

The Liouville equation enabled us to obtain, in a straightforward manner,
the exact expression for the conditional probability density function p.
Reference to (2.34) suggests that it will be much more difficult to obtain p,

from this equation and we shall not pursue this line of thought further.
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III. Perturbation Methods

The references [9-17] address the eigenvalue (natural frequency) and
eigenvector (normal mode) problem in structural systems by perturbation
methods. Before discussing methods or techniques involved, it is important o
understand at the outset that the geometry of the structure, how its equations
of motion are assembled, the flnal mathematical form of the equations of
motion, and how randomness in parameters is introduced have a profound

influence on the nature of the results obtained.

A structure's geometry can be in the form of a linear array (chain) of
elements that may, for example, consist of simple harmonic oscillators strung
together in a line, beam segments continuously connected at a sequence of
supports in a line, etc. The geometry Is the simplest possible in such
arrangements. Plate or shell type structures have a two-dimensional grid-like
geometry and are next in order of complexity. Finally, we have the general
case in which one or two-dimensional geometries are interconnected in a

complexX manner.

The equations of motion depend on the coordinate choice, particularly when
the fact that mass is always distributed is taken into account. Reference [18]
discusses methods of making this cholce and illustrates the substantial
difference in response that can occur due to different choices. Reference [16]
also discusses a component mode synthesis method for selecting coordinates
and assembling the equations of motion. A coordinate transformation of the
equations of motion is sometimes employed as in [10,19] and the altered form

of the equations may be advantageous.

Let us briefly present here a typical perturbation procedure. We consider

the free motion of a conservative system governed by the equations
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Iy+Ky=0 (3.1)
where y is the (nx 1) column vector with transpose

yi={y,...,¥,} (3.2)
Now the elements in the symmetric stiffness matrix K are determined by the
bars, beams, columns, Joints, etec., making up the structure, and the
uncertainties in the structure reside in these elements. Let there be m
structural elements, and let the stiffness matrix of the i structural element be

Ki=(1+X)K ,1=1,...,m , (3.3)

which produces the (nx n) random stiffness matrix

K= rzn] K= {Ky} - (3.4)
|

The random variables X, ...,X are regarded as small perturbation terms

describing the uncertainty present in the structural elements and we assume
E{X}=0 , Vaa{X}=02, (3.5)
K, Is the mean stiffness matrix of the i element, K=K, i.e., K is symmetric
in the Kjk, Kjk is the random stiffness element corresponding to Y and ¥y, and
we assume masses of the elements do not change. We note also that we can

write (3.4) as

K=K+IZXK , K=ZK (3.8)
which gives also
oK
E{K}=K and —=K, , 3.7)
K=K ox, (

where K is the stiffness matrix of the structure with each member taking its

mean stiffness.
Assume normal mode motion

vy = acos(wt + ¢) (3.8)
with o the (nx1) column vector defined by
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T
a={a;,...,a,} . (3.9)
Then, substituting (3.8) into (3.1), we obtain

(K-w?)a =0 , (3.10)
where again I is the (nx n) unit matrix.

The squared natural frequencies wf are determined by the n roots of the

equation

det K- w?l|=0 , (3.11)
revealing that the w? and w, are random variables since K contains random
variables. Let the random mode corresponding to w, be the (nx1) column
vector «,. Then we can write

(K-w)a, =0 , (3.12)

with the usual orthogonality relations

ala, =0 , afKag=0 If s#r
(3.18)
ooy =1, ofKa, =w? ,

where "T” denotes transpose, as before.

We are now interested in expressing the random variables w, and «, in

terms of a power series in the random variables X,;. Consider, for example, the
r'™ natural frequency w, of the system expressed in the form

m m m
i=1 =1 j=1

N natural frequency of the mean system, and the

where w, represents the r'

AppAjjpeee are to be determined. Once we know the A\, X, ., We can obtain

j, ..
statistical properties of w, or any other quantity of interest. Let us consider a
general formulation of this problem, considering natural frequencies and

normal modes. We follow the method suggested by Zarghame [14] which

appears well suited to computation.
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Differentiate (3.12) with respect to X;:

e 1) o (D) o (3.15)
= W, — o, + —w — =0 . 3.15
T 9xX, f ;) ¢
Next premultiply (3.15) by «,T obtaining
- Ow,
a |K - 2w, . I] a, =0, (3.18)
H
since by the symmetry of K(K=K7) and (3.12)
af(K-w?l) =0
Thus, with the third of (3.13)
Bwr 1
T
= a Ko, . 3.17
0X; 2w, T T ( )
This is to be evaluated at X,=...=X =0 (i.e., X= 0); we obtain
Bwr 1
T
= o K oo , 3.18
2 - o7 -

where the underbarred quantities are to be evaluated for the system with mean
stiffness. We note that (3.18) gives the sensitivity coeficients [20,21] of w;
with respect to the X;. The importance of the sensitivity coefficients resides in
the fact that they reveal by their magnitudes those w, that are either sensitive

or insepsitive to uncertainity in members values.

The ay, k=1, ..., n span the coordinate space; hence, we may write
Ooy » g (3.19)
= Rids FEN .
X, j n
We substitute (3.19) into (3.15):
Ouwr 2 ()
K - 2w, —1I| a; + (K- w?I) 2 BPe;=0 . (3.20)
i j

Now premultiply (3.20) by o, obtaining

Ow .
o [ - 20 St + o (o) 5340 =0
i i
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or, for ks%r and with the use of (3.13)

[wi-w?)Bi = -l Koy -
Differentiating the next to last of (3.13) with respect to X gives
Oo
T T
o, ] —— =0,
)¢
which on premultiplying (3.19) by aTI then demonstrates that ﬂ(r) = 0. Thus,

T
o Ko
B = - ——k-' , ks#r , (3.21)
wk wr
and hence from (3.19)
Ja af Ko
— = l_._k__lg"__r_ak , (3.22)
Xy ¥ wi-w?

where the prime on E’ means that k does not take the wvalue r. When
evaluated at X= 0, we have

do, ,

. 2 2
(9X, i ﬂr — Q_}
where again the underbarred quantities are evaluated when members take on

T
o Ko,

(3.23)

their mean stiffnesses. We note that (3.23) gives the sensitivity coeflicients of
the mode shapes with respect to Xj. Without showing the detailed deviation, we

simply state that it can be shown that

&w S B,
— | = (X) g(n 4 g(K) g(r) _ i i .
axiax,-]o 2 [2 (898D +B598) (wf - wf) [ ][ }(324)

kl

and

[ X, aX ] E 8% ax (3.25)

where
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) ) () |

Ow; oo
Qr“wl? <[5 IX; o BXj o .

(3.28)
daT

By = - d [ (3.27)

[e]

Summarizing our results up to this point we have for the random variable

5 (5] x + 5% ) x (3.29)
= W+ + Xt 3.28

r X, X,;0X;

where the partial derivatives are supplied by (3.18) and (3.24). We also have

for the random variable

=“f+2[axlx+ EZ[&X&X]X‘X’+ (3.26)
where (3.23) supplies the first partial derivative, and (3.26) and (3.27) supply

the derivatives in the double sum.

Let us now consider the statistics of w,, etc. Consider Eq. (3.28) first. We

have, on taking expectation,

2

Ew}=w, + = 22 [BXBX ] EXX} +... . (3.30)
Even if the X's are independent E{wr}#_r, since the E{X?}7£0 terms are still
present. Now square (3.28) and take expectation

2
T

0w
Bt} = Wb s | Be)

<23 [ [, o

+ 2558 (5] [mome), pess

o

+ XiX; Foe .
i jk 0 aXiaxj o anaXQ o l g
We can now approximate Var w; it Is deflned as
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Var w? = E{w?} - [E{w JI? . (3.32)

Thus, it is a straightforward task to approximate the first two moments of w,.
If we extend (3.28) to cubic, quartric, ... terms in the X, then (3.30) and
(3.31) would contain additional terms. How far we should continue this
process will depend on the relative size of the terms containing E{Xin},
E{XXX}, etc. and what information we have that would enable us to evaluate

these expectations. It is not usual that we can evaluate any more than E{X{X;}.

‘We note that Zarghame's method described above gives sensitivity
coefficients for natural frequencies and corresponding normal modes plus series
expansions for these quantites in terms of the random variables X,, ... ,Xy
that define the uncertainty present in the stiffness matrix K. Moments of the
quantities are easily obtained, but it Is practically impossible to obtain
distributions for the natural frequencies and corresponding normal modes. For
confldence interval location and size for a natural frequency, for example, we
must approximate using

E{w,} + 3 /Var w, (3.33)
as a rough indication of a 999 confldence interval. This interval gives us some
idea of the spread in a natural frequency and it could be employed to make
reasonably sure that no steady excitation frequencies were contained therein for
all w;. Alternativel&, we might employ the signal to noise ratio

E{w,}
Var o,

to obtain an idea of how important stiffness uncertainty is for natural

(3.34)

frequency; if (3.34) is greater than 20 or 30 say, we would regard the location
of w, as deterministic; on the other hand, if (3.34) Is less than 5-10, it might be
unwise to ignore this level of variability in the location of w,, depending, of

course, on the consquences of such uncertainty.
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IV. Mean Square Approximate Systems

‘We consider, in this section, a technique for including disorder or parameter
uncertainty that follows a different line than taken In previous sections.
Specifically, mean square systems are employed. We begin by introducing this

type of system [22,23].

Let us begin with a very simple example in which there is no disorder and
no damping. Let the coordinates q, ..., q,. Then, with
where summation Is on multiple subscripts. Then, with mass coeflicients

included, (4.1) can be rewritten as

m g + KyQ = fi(t) - (4.2)
Let, with f,; constant,
fi(t) = fojcos(wt + ¢) . (4.3)
Then, the forced motion
qx = ugcos(wt + @) (4.4)
satisfles
(k]k bt meJk) uk = f°] . (4.5)

These equations state that given the foj and w, the uy, are determined by the
solution of this linear system of equations. Further, if w is the natural

frequency w, and the u, deflne the r'®

mode shape ay, then the f,; must
vanish. Let us look at the natural frequency problem In an unorthodox

maniner.

Suppose we pick an w and a set of u, which may not be one of the natural
frequencies and normal modes. Then the right of (4.5) will not be zero and we

need force amplitudes € produce this motion:
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The €; are the amplitudes required to maintain the assumed motion; we regard

the € as the amplitudes of the constraint forces required to produce the

motion.

Consider next a summation of second order amplitudes

I(n,w) = ﬁ) ef >0 . (4.7)
1

For a fixed w, this is a positive deflnitive quadratic function of the u’s. We can
use this equation to find the natural frequencies w, and corresponding normal
modes ;. Assume the u’s are normalized in some manner (for example,
u,=1, or better myuu,=1). For fixed w, we find the minimum of I(u,w)>0.
Notice that if w=w, the u's that produce a minimum are the o« and
I( oy,w?)=0, since the €;=0, }=1,...,n, in this case. It follows that if for a
specified w we find the minimum of I(u,w?) and this minimum equals zero,
then this w is a natural frequency and the u that produces this zero minimum
are proportional to the corresponding normal mode. Let us consider another

interesting aspect of this method.

Conmnsider a frequency window g(w) with the following properties:

glw) >0 , W<w<w!,
(4.8)
w’ w'
[e(w)dw =1 , [w?g(w)dw < oo
w! w'
Replace (4.7) with
W
I(u,g) = [ Nefdw . (4.9)
"

Find the the u that makes (4.8) a minimum. The interesting feature of this
method is that if there is a natural frequency of the system in the frequency

interval (w’,w"”), the u in minI(u,g) determine the normal mode of this natural
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frequency. Let these u be in component form {u(™,...,u{?}; then the

corresponding natural frequency is determined by the Rayleigh quotient:

(ry{D
w2 = kU Yk (4.10)
r GG '
mlkui Uy

where we assume we have found the r®

normal mode and its natural
frequency. It follows that if there is concern that an interval (w’,w’) contains a
natural frequency, we have the method for determining if this is the case

without determining all natural frequencies of the system. References [22,23]

give details on this matter we will not discuss in this report.

The computational problem of finding the minimum of I(u,w?) is carried
out using one of a number of computer codes based upon conlugate gradient

techniques, and, hence, is not a problem.

So far, there has been no disorder in our system; i.e., the parameters my
and Ky have been assumed to take deflnite values. Let us assume at this point

that mass and stiffness contain random variables. We deflne, in this case,

wll
n
(u,g) =E{ [eg(w) 3 efdwy , (4.11)
w’ 1
where, in vector-matrix form
n
3 e = uT(K- ™M) (K- w™)u . (4.12)
1

n
Since E only operates on Eef in (4.11), we have
1

n
E { gef} =E {uT(K— WM (K- QQM)U} , (4.13)
|
and w is a fixed parameter in (4.13). We assume the u are parameters to be

determined. Thus, (4.13) takes the form
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E { ief} = u'E {(K— wM)T(K- gQM)} u . (4.14)
1

We note that (K- w?*M)T=K- w?*M because of the symmetry assumed for K and
M. In all events, means and second moments of K and M are all the

information needed to determine the expectation in (4.14).

We than proceed as in the deterministic case, since I(u,g) has a

deterministic form.

To relate (4.7) to (4.13), all we have to do iIs assume

g(w) = §(w-w) (4.15)
where 6(.) is the delta function. The substitution of (4.15) into (4.11) yields

I(u,w) = u'E {(K— wM)T(K- wQM)} u . (4.18)
This expression differs from (4.7) because of the assumed random parameters
in K and M. If in (4.7), w Is a natural frequency of the deterministic system,
I(u,w)=0. The I(u,w)>d in (4.18) because of the random parameters. Use of
this fact has been made in [32] to obtain an estimate of the variance of natural

frequency w,; the formula is

I(u,w?)
Var w, = -, (4.17)
qw?

where w, is the r“" natural frequency and u, is the corresponding normal mode
for the system with mean parameter values. Monte Carlo simulation [24]
reveals that (4.17) can be conservative and a correction Is suggested. Equation
(4.17) is easy to use since a minimum for I is not required. Further, (4.17)
provides a much simpler method for estimating the W_rariance of w, than given in
Section III. However, mean square approximate systems do not provide any
information on E{wr} or on variability in mode shape. Let us next consider

how these systems apply to estimating frequency response with parameter
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uncertainty present.
We take the equations of motion in the form

Md+Cq+Kag=t . (4.18)
The frequency response Z~!(w) and Z(w) are defined as follows. For the
external force,

f=6e", (4.19)
with r fixed at §;=0 for J74r, §,,=1, the component form of (4.18) is

which is exact.
Suppose we try to approximate (4.20) with

q, = ﬁjrei“)t y (4.21)
where the f; are not known in advance. The equations of motion now are not

satisled and we must introduce constraint forces € to bring about their

satisfaction as

(K- 0™y + iwCy) B85 = € - (4.22)

From
n
I(fw) =E {2}36,}6],} , (4.23)
where asterisk dex'lotes complex conjugate. This I is Just like (4.11) except the
B have replaced the u. We find the § that make (4.23) a minimum, denote
this 8 by B. Then, f={3,, ...,B,} is the mean square approximate to the

Zj;l(w). It can be shown that if the system is deterministic (i.e., contains no

random parameters) the £ are exactly the Zj;l(w).

The ¢; are complex, hence, the right of (4.23), when written out, Is

n
S E { [[Kjk- w?M - 1w Ciy) ﬁ}:,éj,] [(Kj,_ WM +iwCy)) By~ 5jr]} . (4.24)
=1
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It follows that the minimum of (4.23) is for the real and imaginary parts of 3y,.

This added complication poses no additional computational problem [25,286].

The method also supplies an error criterion that makes it possible to Judge

the accuracy of the fy,.

References [25,28] describe in some detail how the above technique can be
applied to estimating the frequency response in a number of structures with
specific attention being paid to numerical details of the computations.
Reference [1] also describes how these techniques can be applied to the
construction of a sequence of approximants for a complex system by starting
from a highly constrained initial system and gradually relaxing the constraints.
In these three references, extensive use is made of the error criterion
determine when the estimated quantities (usually frequency response) are
sufficiently accurate for the purpose in hand. A comment on what mean square

approximate system provide is now in order.

We observe, for example, that these systems enable us to estimate
frequency response Zy(w) by means of By (w). The [y (w) are deterministic
numbers that take into account the means and variances of the statistical
parameters of the structure. Thus, the ﬁkr(w) provide a deterministic estimate
for Zg!(w). In the form given above and in [25,26,27], it is not possible w0
obtain statistical information concerning the Z"l(w). However, it is possible to
employ Monte Carlo methods to obtain estimates for the [y (w) given the
parameters are sample values to obtain sample values for the By(w) from

which statistical information can be obtained.

The statistical energy approach (SEA) merits mention at this point since it
also employs average energy concepts [28-32]. Basically, SEA estimates the

average flow of energy from one part of a structure to another. For example, if
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there is energy input into one part of a complex structure, this method provides
an estimate of how this energy flows into another part of the structure. Thus,
if is possible to estimate average vibrational energy present in any part of the
structure. Information of this type is frequently the only type of information it
is possible to obtain about the response in an extremely complex structure
containing a large number of undamped natural frequencies in 1 Hertz. Insofar
as we know, nothing has yet been done to include the influence of statistical
parameters; however, the work given in [31] suggests it might be possible to do

this.
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V. Statistical Linearization of Nonlinear Systems

1. Svstems with Known Nonlinearity

In a number of real systems the non-linearity property may be known. The
statistical properties of the response of such systems cannot, in general, be
determined. However, the statistical properties of the response of its linearized
version may result in an adequate approximation. To obtain the linearized

form, the method of statistical linearization has often been applied [33].

The basic idea is generated as follows. Consider the true system model
¥(t) + f(¥(t)) = n(t) (5.1)
where n(t) is the random excitation vector, which is assumed to be known as
well. The idea is to approximate (5.1) as the linear form

x(t) + Ax(t) = n(v) (5.2)
The approach is to write (5.1) as,

K0 + A¥O) + () - A | =n(») (5.3)
The linearization is obtained by choosing matrix A so that the ensemble

average of the mean of the difference terms in (5.3) is minimized, i.e.,

min E { |leCx(8) - Ay(t)HQ} (5.4)

The solution is simply obtained as

A =E {{(0Y}E {w}! (5.5)
where ( )’ denotes transpose.
Therefore, A is defined in terms of the y-statistics. But, the y-statistics are
unknown! If they were known, we would not have to linearize the model. The
traditional idea is to determine A via the linear X-system statistics as

A =E {{(x)x'} E {xx'}* (5.8)
The statistics in (5.8) can be exactly obtained in general, but when n is
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Gaussian its determination defilned by (5.2) becomes simpler. It should be
pointed out that if f(y) is a vector polynomial then (5.5) can be determined

exactly as statistical values, through stationary solutions of various forms [34].

The following example for the Duffing oscillator with white noise excitation

is very typical.
Example I- Statistical linearization for the Duffing oscillator with white noise
excitation.

Consider the second order system

¥(t) + ¥(t) + ¥3(t) = B(1) (5.7)
The B process is the gaussian white noise, given through the classic Brownian

process, which is Gaussian. The classic Ito form of (5.7) is written as

dy, = y,dt
(5.8)
dy, = — (¥,+yd)dt + dB
From the conditions of B, we have
E{dB} =0 , E {(dB)?} = o%dt (5.9)
We wish to determine the linear form
X(t) + %(t) + kx(t) = B(t) (5.10)
which we can write as
{ dx,; = X,dt
dx, = - (x,+kx,)dt + dB (5.11)
Clearly, k is determined as
k=B &3 x,}E &}!'=E &I}IE &I} (5.12)
However, since (X, X,) Is gaussian, then we flnd
k = SE{XIQ} (5'13)

For the system (5.11) we can determine the stationary density as
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vk 1
p(X;,Xp) = ~ exp |- — (x24+kx]) (5.14)
To
This allows us to obtain the value of k and the Xx-moments as
k=1.220; E{x;x,} = 0; E{x2}=0.4080 ; E{x?}=0.5000% (5.15)
It is interesting to point out that for this particular example the moments of
(¥,,¥2) can also be obtained for the stationary case as

E{y,¥,} = 0; E{yl}=0.4780 ; E{y?} = 0.5000" (5.16)
We see that the error in the linear form is only in E{x{}, and is
E{yiE&?
Ui FERS  0.070 or 14.4% (5.17)
E{v?} 0.478

This is not an unacceptable error.

2. Svstems with Stochastic Parameters

The question that must be considered here {s, if the system has not only
nonlinearities, but also possesses parameters that are random as well, in what
way may we apply statistical linearization so that the random constant
coefficients of the true system are reflected in the approximate system. We
illustrate the procedure by considering again the D uffing equation

¥ + ¢y + by® = B(t) (5.18)
where here b is assumed to be a random constant. The linear form is taken as

X + ¢x + abx = B(t) (5.19)
where «, the linearization constant, is determined from

min E { Hby3 - abyHQ} (5.20)
o
which leads to
o = E{py}} Epiyi)! ‘ (5.21)

In the terms of conditional moments (5.18) can be expressed as
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-1

a=E {bQ E{y; Ib}} E {b’-’E{yf |b}} (5.22)
Following the traditional path, we determine o« from the linear X-sSystem
statistics, so that
-1

a=E {sz &t |b}} E {bQE x2 |b}}

-1

2

= E{b2 ﬁ?,{xf Ib}] }E {b?{xl2 Ib}} (5.23)

The conditional second moments are readily obtained as

Bl ? o? ) o?
Ei{x;X, by =0 ; Xy lbr = ; BEixs b= — 5.24
fixe 0} (xZ by = s BEFp}= 7 (5.24)
which, when substituted into (5.23), leads to
2 2

o3 o 1 __ 39 (5.25)

when the mean of b, E{b}=g. The x-moments can then be determined
E{x?}=E {E{xf |b}} = 0.408(b/c)?0 E{1/b}

E{x;}=E {E{x22 Ib}} = 0.5000%/c (5.28)

For illustration, assume a uniform distribution function for the opening

constant b with mean 5,

1/2¢b , b(1-€)<b<b(1+e)

p(b) ={ 0 , otherwise (5.27)
Thus
E{1/b} = o (n (1+¢) (5.28)
2¢b (1-¢€)
where e=bandwidth parameters. Hence,
E{?}= 0.204(1/bc)!/2 (o /e)n %%;— (5.29)

The exact solution for this case is
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E{y2} = 0.478(1/bc) (0 fe) [(1+€)V/% - (1-¢€)'/? (5.30)

and the error is

E{v?} 0.478[(1+€)Y2- (1- €)1/
which for e=0 is 14.5%.

E{yi} - B} 0.478 [(146)Y2= (1- €)1/?] — 0.204{n(1+€/1- ¢) (5.31)
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VI. Closure

The requirement for precision pointing of large scale structures, consisting
of trusses, radio reflectors and optical systems, has motivated the investigation

of how parametric uncertainties affect the system response characteristics.

Randomness of these large structures may arise from many sources, for
example: manufacturing processes; space assembly by humans, variations in
environmental conditions that may bear directly upon the material properties
and resulting mechanical behavior. These uncertainities must be accounted for
on some rational basis so that the quantities of concern for describing the
response of the structure can be statistically characterized. Such quantities
include: natural frequencies, normal modes, frequency response, etc. Specific
random techniques that are available and discussed in this report are:
Liouville’s equation, perturbation methods, mean-square approximate systems,

and statistical linearization.

These are the techniques that we shall consider in order to develop
procedures for determining the response of space structures. It is conceivable,
however, that advances in these techniques will have to be developed as our

research effort unfolds.
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